Post Views: 1,593
จาก Kaggle – วิธีการใช้ Logistic Regression บนข้อมูล Iris เราได้ Model มาแล้ว แต่ จะนำสู่ Production ได้อย่างไร ?
ใน Python มี Object Serialization ทำให้สามารถเก็บ Object ที่สร้างขึ้น ไปไว้ในไฟล์ ซึ่ง มีให้ใช้หลายตัว ได้แก่
- pickle
- cpickle
- joblib
มีคนทำการทดสอบความเร็ว พบว่า cpickle เร็วสุด (https://stackoverflow.com/questions/12615525/what-are-the-different-use-cases-of-joblib-versus-pickle) แต่ในที่นี้ จะใช้ joblib เพราะน่าจะเหมาะกับงานที่ต้องมีการ Load Data ขนาดใหญ่ ใช้งานร่วมกันหลาย Process (เท่าที่เข้าใจครับ)
การสร้างไฟล์ .pkl บน kaggle ดังนี้
- เพิ่มคำสั่งต่อไปนี้ แล้ว กดปุ่ม commit and run ด้านบนขวา
from sklearn.externals import joblib joblib.dump(model, 'myiris.pkl')
- กดปุ่ม รูป << ด้าน ซ้ายบน เพื่อกลับไป หน้า Kernel ของเรา คลิกที่ Output จะเห็นไฟล์ ที่เพิ่งสร้าง ให้คลิก Download ไปเก็บไว้ใน Folder ที่จะใช้งาน Productioin
ต่อไป จะเป็นขั้นตอนการติดตั้ง และการใช้ Flask ซึ่งเป็น Python Microframework และ ใช้ Flask RESTful เพื่อสร้าง REST API
- ใช้คำสั่งต่อไปนี้ ติดตั้ง flask และ flask-resetful
pip install flask flask-restful
- จากนั้น เข้าไปใน folder ที่เราวางไฟล์ myiris.pkl ไว้ แล้ว สร้างไฟล์ iris.py มี Code ดังนี้
from flask import Flask, request from flask_restful import Resource, Api, reqparse from sklearn.externals import joblib import pandas as pd #from sklearn.linear_model import LogisticRegression app = Flask(__name__) api = Api(app) # Model model = joblib.load('myiris.pkl') class Iris(Resource): def get(self): return { "greeting":"Hello From IRIS Dataset"} def post(self): parser = reqparse.RequestParser() parser.add_argument('sl') parser.add_argument('sw') parser.add_argument('pl') parser.add_argument('pw') args = parser.parse_args() x = pd.DataFrame([[ args['sl'],args['sw'], args['pl'],args['pw'] ]] ,\ columns=['sepal_length', 'sepal_width', 'petal_length', 'petal_width']) result = model.predict(x) return {"result": result[0]}, 201 api.add_resource(Iris, "/iris") app.run(debug=True)
- จากนั้น ไปที่ Command Prompt พิมพ์คำสั่งต่อไปนี้ เพื่อเรียก Flask ขึ้นมาทำงาน โดยรับ Request ที่ Port 5000
python iris.py
- หากใช้ Web Browser ติดต่อไปยัง http://localhost:5000/iris จะได้ผลดังนี้
- แต่ถ้าใช้ Postman ติดต่อไปยัง http://localhost:5000/iris แล้วส่งตัวแปร ความกว้าง ความยาว ของกลีบดอก ผ่าน POST ไป จะได้ผลการ Classification มาว่าเป็น Species อะไร ดังนี้
- จากตัวอย่างนี้ แสดงให้เห็นว่า เราสามารถสร้าง Model จากข้อมูลขนาดใหญ่ แล้วนำออกมาเป็น Pickle แล้วใช้ Flask RESTFul เพื่อรับ Request แล้วตอบกลับเป็น ผลการ Classification ได้ หรือ Prediction ต่าง ๆ ได้
เดี๋ยวค่อยมาลงรายละเอียดเรื่อง วิธีการใช้งาน Flask และ การใช้ Machine Learning แบบต่าง ๆ กัน