Tag: machine learning

python #03 – Train/Validation/Test and Accuracy Assessment with Confusion Matrix

ต่อจาก python #02 – ติดตั้ง Tensorflow และ Keras ซึ่งกล่าวถึง ขั้นตอนการสร้าง Model และ วาง Layers ต่าง ๆ ของ Keras รวมไปถึง การใช้ model.summary() เพื่อแสดงโครงสร้าง Neural Network ที่สร้างขึ้นมาแล้ว ต่อไป เป็นการ นำข้อมูลมาแบ่งเป็นชุด สำหรับ Train/Validate/Evaluate การแบ่งข้อมูล สมมุติมีข้อมูล ที่อาจจะมาจาก CSV File ซึ่งมี field 0 – 9…

Kaggle – วิธีการใช้ K-Means บนข้อมูล iris

ต่อจาก Kaggle – วิธีการใช้ Logistic Regression บนข้อมูล Iris ซึ่งเป็น Machine Learning แบบ Supervised Learning คราวนี้ ลองมาดูว่า ถ้า เราไม่รู้ว่า ข้อมูลแบบออกเป็นกี่กลุ่ม จะให้ Machine แบ่งกลุ่มได้อย่างไร หนึ่งในวิธีที่ได้รับความนิยมคือ K-Means Clustering มีคลิป ที่อยากให้ลองชม เพื่อความเข้าใจ StatQuest: K-Means Clustering เริ่มกันเลย 1. นำเข้าข้อมูล และ Package ที่ต้องการ import pandas as pd import…

From LAB to Production – จาก Machine Learning Model สู่ Flask RESTful

จาก Kaggle – วิธีการใช้ Logistic Regression บนข้อมูล Iris เราได้ Model มาแล้ว แต่ จะนำสู่ Production ได้อย่างไร ? ใน Python มี Object Serialization ทำให้สามารถเก็บ Object ที่สร้างขึ้น ไปไว้ในไฟล์ ซึ่ง มีให้ใช้หลายตัว ได้แก่ pickle cpickle joblib มีคนทำการทดสอบความเร็ว พบว่า cpickle เร็วสุด (https://stackoverflow.com/questions/12615525/what-are-the-different-use-cases-of-joblib-versus-pickle) แต่ในที่นี้ จะใช้ joblib เพราะน่าจะเหมาะกับงานที่ต้องมีการ Load Data…

Kaggle – วิธีการใช้ Logistic Regression บนข้อมูล Iris

ข้อมูล Iris Dataset มักจะใช้ในการเริ่มต้นศึกษาการใช้งาน เครื่องมือทาง Data Science โดยเฉพาะ Classification เพราะไม่ซับซ้อน มี 4 ฟิลด์ ที่ใช้เป็น Features และมี 1 ฟิลด์ ที่จะเป็น Class (มี 3 Categories) เริ่มจาก New Kernel ในที่นี้ เลือก Notebook จากนั้น เลือก Add Dataset จากที่เค้ามีให้ หรือ จะ Upload ขึ้นไปก็ได้ จากนั้น ข้อมูลของเราจะมาอยู่ที่ …

Ambari #08 ปรับแต่ง pyspark ให้สามารถใช้งาน spark.ml ได้ ด้วย conda package management

เราสามารถใช้งาน Spark ในด้าน Machine Learning ด้วย pyspark แต่ปัญหาอยู่ที่ว่า python ที่ติดตั้งบน Ubuntu 14.04 นั้น ไม่มี package ที่จำเป็นต้องใช้ ได้แก่ numpy, scipy, scikit-learn, matplotlib ซึ่งขั้นตอนการติดตั้ง ก็จะยุ่งยาก เพราะต้อง compile code เองด้วย แต่ปัจจุบัน มีเครื่องมือที่เรียกว่า “conda” ทำหน้าที่ติดตั้ง package ที่ต้องการได้สะดวก ในที่นี้ จะเลือกใช้ python 2.7 และ จะติดตั้งลงไปใน /opt/conda…

Machine Learning #01 – Python with iris dataset

ในบทความนี้ จะแนะนำวิธีการสร้างกระบวนการ Machine Learning ด้วย Python โดยใช้ iris dataset ตั้งแต่การโหลดข้อมูล, สร้าง  Model,  Cross Validation, วัด Accuracy และการนำ Model ไปใช้งาน เพื่อความสะดวกในการเรียนรู้ เราจะเลือกใช้ Anaconda ซึ่งเป็น Python Data Science Platform ซึ่งจะรวบรวมเครื่องมือ และ Library ที่จำเป็นต่อการพัฒนา โดยสามารถเลือก Download รุ่นที่เหมาะกับระบบปฏบัติการของท่านได้ที่ https://www.anaconda.com/download/ สามารถ Clone Repository ตัวอย่างทั้งหมดที่กล่าวถึงในบทความนี้ได้จาก https://github.com/nagarindkx/pythonml และ แนะนำให้ใช้งาน…