Tag: ai

อ่านข้อความจากภาพ ด้วย Tesseract-OCR

OCR หรือ Optical Character Recognition จริง ๆ ก็มีใช้กันมานานมากแล้ว แต่การใช้งานก็จะผูกติดกับ Hardware พอสมควร แต่ในปัจจุบัน เราสามารถใช้ความรู้ด้าน Machine Learning / Deep Learning เพื่อให้คอมพิวเตอร์เข้าใจภาพได้ และสามารถนำมาประกอบกับเป็น Software สำหรับใช้งานของตนเองได้ ในบทความนี้ ทดลองใช้ Tesseract-OCR พี่พัฒนาโดย Google อ่านภาพ เอกสารที่ Print จาก Computer เป็นกระดาษ -> มีการเซ็นต์ชื่อ -> นำกลับมา Scan อีกครั้ง ***…

python #07 Sentiment Analysis – IMDB

ต่อจาก python #06 – Sentiment Analysis ด้วย Keras + Tensorflow เนื่องจากเรา Train โมเดล ด้วย ประโยคเพียง 9 ประโยค ซึ่งประกอบด้วยคำ 19 คำ เมื่อถูกทดสอบด้วยคำที่ “ไม่เคยเจอมาก่อน” ก็จะไม่สามารถวิเคราะห์ได้ถูกต้องนัก ยิ่ง ถ้าเจอกับประโยคที่ ไม่มีคำที่เคยเจออยู่เลย ก็จะได้ Zero Vector ไปเลย (ในทางเทคนิค สามารถตั้งค่าห้ Unknown Word มี Index = 1 ได้) แก้ไขอย่างไร…

python #06 – Sentiment Analysis ด้วย Keras + Tensorflow

บทความนี้กล่าวแบบทางเทคนิค ไม่เน้นวิชาการ ทฤษฏีมากนัก Sentiment Analysis เป็นตัวอย่างที่ดีของการเริ่มต้นทำงานด้าน NLP (Natural Language Processing) เริ่มจากหาตัวอย่างประโยค (Inputs) และเป้าหมาย (Labels) แยกคำจากประโยค (Tokenization) แปลงให้เป็นตัวเลข (Word Representation) แล้วสอน NN (Train) วัดผล (Test/Evaluate) แล้วนำไปใช้ โดยป้อนประโยคเข้าไป แล้วดูว่า โมเดลของเราจะจัดให้เป็น Labels ใด (ในตัวอย่างนี้จะเป็น Multiclass (Multinomial) Classification) ดู Jupyter Notebook Input สมมุติเรามีตัวอย่างประโยคประมาณนี้แบ่งเป็น Positive,…

python #05 – การ Save/Load ตัวโมเดลจาก Keras แล้วนำไปใช้ใน Production Server

ต่อจาก python #03 – Train/Validation/Test and Accuracy Assessment with Confusion Matrix เมื่อสร้าง Neural Network Model แล้วทำการ Train/Test ปรับค่า Hyper parameters จนได้ผลเป็นที่พอใจแล้ว (Accuracy และ Confusion Matrix ให้ค่าที่รับได้) ก็สามารถเก็บ Model นี้เอาไว้ใช้งานภายหลัง ไม่ต้องเริ่มต้น Train ใหม่ โดยใช้คำสั่ง ก็จะได้ไฟล์ (ตามตัวอย่างนี้) ชื่อ example_model.h5 สามารถนำไปใช้บนเครื่อง Production ได้…