kanakorn.h
บันทึกเอาไว้สั้น ๆ ในที่นี้ ต้องการสร้างผู้ใช้ ‘username’ ให้มีรหัสผ่านเป็น ‘userpasswordgohere’ ให้สามารถใช้งาน ‘someschema’ โดยให้ใช้เฉพาะ ‘SELECT’ ได้กับทุก Tables ใน someschema บน PostgreSQL ใช้คำสั่งนี้ ในการสร้างและ Grant สิทธิ์ จบ
>> Read More <<
ต่อจาก python #06 – Sentiment Analysis ด้วย Keras + Tensorflow เนื่องจากเรา Train โมเดล ด้วย ประโยคเพียง 9 ประโยค ซึ่งประกอบด้วยคำ 19 คำ เมื่อถูกทดสอบด้วยคำที่ “ไม่เคยเจอมาก่อน” ก็จะไม่สามารถวิเคราะห์ได้ถูกต้องนัก ยิ่ง ถ้าเจอกับประโยคที่ ไม่มีคำที่เคยเจออยู่เลย ก็จะได้ Zero Vector ไปเลย (ในทางเทคนิค สามารถตั้งค่าห้ Unknown Word มี Index = 1 ได้) แก้ไขอย่างไร ? ตอนนี้ เปรียบเหมือนโมเดลเป็นเด็กเล็ก รู้จักคำแค่ 19 คำ พอมีคำใหม่ ๆ มาก็จะไม่เข้าใจ วิธีการคือ ต้องสอนคำใหม่ ๆ และรูปแบบประโยคใหม่ ๆ ให้เค้า…
parnchanok.j
สำหรับ Blog ที่2 ในรอบปีงบนี้ จะขอว่าด้วยเรื่อง Extension บน Chrome ที่เรียกว่า StayFocusd !! StayFocusd คืออะไร แล้วเจ้าตัวนี้เนี่ยมันทำอะไรได้บ้าง ? มา ไม่ต้องเกริ่นไปเกริ่นมามากมาย เรามาเริ่มทำความรู้จักกันเลยดีกว่า StayFocusd เป็น Extension อีกตัวนึงที่ช่วยเพิ่มประสิทธิภาพในการทำงานของเราด้วยการ “บังคับ” และ “จำกัด” เวลาที่ตัวเราเองใช้ไปกับเว็บไซต์ต่างๆ ที่ทำให้เราเสียเวลา เว็บที่หัวหน้าเรามองว่าไม่มีประโยชน์ (แต่มันมีประโยชน์ทางจิตใจกับเราไง หัวหน้าไม่เข้าใจหนูหรอกกกกกก T T) extension อันนี้เหมาะมาก สำหรับใครที่ติด Social Network เปิด youtube อัพเดทสถานะบน facebook ดูซีรีย์เกาหลีออนไลน์ ดูละครย้อนหลังผ่าน line tv เข้า shopee lazada บลาๆ จนถึงระดับที่ทำให้เสียการเสียงาน ลองมาใช้ StayFocusd กันดูเถอะ เบื้องต้นมันจะให้เรานำเว็บไซต์ที่เรามองละ ว่ามีแนวโน้มที่จะสูบเวลาของเราไปโดยเปล่าประโยชน์…
บทความนี้กล่าวแบบทางเทคนิค ไม่เน้นวิชาการ ทฤษฏีมากนัก Sentiment Analysis เป็นตัวอย่างที่ดีของการเริ่มต้นทำงานด้าน NLP (Natural Language Processing) เริ่มจากหาตัวอย่างประโยค (Inputs) และเป้าหมาย (Labels) แยกคำจากประโยค (Tokenization) แปลงให้เป็นตัวเลข (Word Representation) แล้วสอน NN (Train) วัดผล (Test/Evaluate) แล้วนำไปใช้ โดยป้อนประโยคเข้าไป แล้วดูว่า โมเดลของเราจะจัดให้เป็น Labels ใด (ในตัวอย่างนี้จะเป็น Multiclass (Multinomial) Classification) ดู Jupyter Notebook Input สมมุติเรามีตัวอย่างประโยคประมาณนี้แบ่งเป็น Positive, Neutral, Negative เพื่อไว้ใส่เพิ่มเติมได้ แล้วเอามารวมกันเป็น data โดยแปลงเป็น Numpy Array เพื่อสะดวกในการ Tokenization ต่อไป Tokenization ใน Keras มีเครื่องมือให้แล้ว…
kampanart.c
หลังจากที่พี่หนุ่ม คณกรณ์ หอศิริธรรม ได้เขียนเรื่อง วิธีติดตั้ง HTTPS ด้วย Certificate ของ Let’s Encrypt ไปแล้วนั้น ก็จะมาถึงทางฝั่ง Windows กันบ้าง ซึ่งจะติดตั้งผ่านเครื่องมือ บน Command Line ครับ ตัวอย่างนี้จะเป็นวิธีการติดตั้งโดยใช้เครื่องมือที่ชื่อว่า WinACME ซึ่ง ดาวน์โหลดได้ที่นี่ (จริงๆ มีหลายตัวให้เลือกใช้ครับ ซึ่งส่วนใหญ่จะเป็นการพัฒนาผ่าน ACME API มีทั้งแบบเป็น Command Line, Power shell และเป็น GUI ครับ) หลังจากดาวน์โหลดไฟล์มาแล้ว ผม Extract ไปไว้ที่ C:\LetsEncryptSSL จากนั้นก็เปิด Command Prompt ด้วยสิทธิ Administrator(เปิดด้วยสิทธิ Administrator เพื่อให้มีการสร้าง Schedule Task ในการ Renew Cert. โดยอัตโนมัติครับ) จากนั้นทำการเรียกด้วยคำสั่ง letsencrypt…
ต่อจาก python #03 – Train/Validation/Test and Accuracy Assessment with Confusion Matrix เมื่อสร้าง Neural Network Model แล้วทำการ Train/Test ปรับค่า Hyper parameters จนได้ผลเป็นที่พอใจแล้ว (Accuracy และ Confusion Matrix ให้ค่าที่รับได้) ก็สามารถเก็บ Model นี้เอาไว้ใช้งานภายหลัง ไม่ต้องเริ่มต้น Train ใหม่ โดยใช้คำสั่ง ก็จะได้ไฟล์ (ตามตัวอย่างนี้) ชื่อ example_model.h5 สามารถนำไปใช้บนเครื่อง Production ได้ โดยเรียกใช้งานด้วยคำสั่ง จากนั้น ก็จะสามารถใช้ mode.predict() เพื่อใช้งานได้ตามต้องการ ต่อ การสร้าง RESTful API สำหรับใช้งานจริง ง่าย ๆ ด้วย Flask และ…
เมื่อติดตั้ง Tensorflow ก็จะมี Tensorboard ติดตั้งมาให้แล้ว วิธีการใช้งาน ก็แสนง่าย คือ ใน Code เพิ่ม(ตั้งชื่อ directory ให้ดี เช่นกรณีนี้ ตั้งชื่อว่า example-logs เป็นต้น) และในส่วนของ fit ให้เพิ่ม callbacks เข้าไป ดังภาพนี้ จากนั้นก็ Train ตามปรกติ เมื่อต้องการดู Tensorboard ก็เพียงเปิดอีก Terminal หนึ่ง (Command Prompt) ไปที่ Directory ที่มี log อยู่ แล้วใช้คำสั่ง ตัว Tensorboard ก็จะทำงาน อ่าน logs จาก –logdir ที่กำหนด แล้วแสดงผลที่ Port 6006 แต่รายละเอียดใช้ยังไง ขอศึกษาเพิ่มเติมก่อนครับ แหะ ๆ
โจทย์มีอยู่ว่า ต้องการระบบประเมินผล Online ให้อาจารย์จากหลาย ๆ มหาวิทยาลัย จำนวน 5 ท่าน ประเมินผลการทำงาน ในมุมมองต่าง ๆ แยกตาม Sheet และ ในแต่ละมุมมอง อาจารย์แต่ละท่าน สามารถเลือกตัวเลือกจาก Dropdown ในคอลัมน์ของตนเองในแต่ละหัวข้อย่อย แต่ในขณะเดียวกัน สามารถมองเห็นได้ด้วยว่า อาจารย์ท่านอื่นให้คะแนนหัวข้อย่อยนั้นว่าอย่างไร แต่จะไม่สามารถแก้ไขของท่านอื่น หรือ แก้ไขส่วนอื่น ๆ ได้ มีระบบสรุปคะแนนอัตโนมัติ เริ่มกันเลย ลองคลิกไปดูตัวอย่างได้ที่นี่ สร้าง Google Sheets โดยมีทั้งหมด 5 Sheets แต่ละ Sheet มีคอลัมน์แรก เป็นรายการที่จะประเมิน คอลัมน์ B – F เป็นส่วนที่ผู้ประเมินแต่ละท่านใช้ในการประเมิน ชีตที่ 1 -3 เป็น มุมมองในการประเมิน ชีตที่ 4 เป็น Rubric…
ต่อจาก python #02 – ติดตั้ง Tensorflow และ Keras ซึ่งกล่าวถึง ขั้นตอนการสร้าง Model และ วาง Layers ต่าง ๆ ของ Keras รวมไปถึง การใช้ model.summary() เพื่อแสดงโครงสร้าง Neural Network ที่สร้างขึ้นมาแล้ว ต่อไป เป็นการ นำข้อมูลมาแบ่งเป็นชุด สำหรับ Train/Validate/Evaluate การแบ่งข้อมูล สมมุติมีข้อมูล ที่อาจจะมาจาก CSV File ซึ่งมี field 0 – 9 คือ ตัวแปรต้น หรือ ที่มักเรียกว่า Features และ มี field 10 เป็น ตัวแปรตาม หรือ ที่เรียกว่า Label ทำการแบ่งข้อมูล…