Month: January 2019

  • python #03 – Train/Validation/Test and Accuracy Assessment with Confusion Matrix

    ต่อจาก python #02 – ติดตั้ง Tensorflow และ Keras ซึ่งกล่าวถึง ขั้นตอนการสร้าง Model และ วาง Layers ต่าง ๆ ของ Keras รวมไปถึง การใช้ model.summary() เพื่อแสดงโครงสร้าง Neural Network ที่สร้างขึ้นมาแล้ว

    ต่อไป เป็นการ นำข้อมูลมาแบ่งเป็นชุด สำหรับ Train/Validate/Evaluate

    การแบ่งข้อมูล

    สมมุติมีข้อมูล ที่อาจจะมาจาก CSV File ซึ่งมี field 0 – 9 คือ ตัวแปรต้น หรือ ที่มักเรียกว่า Features และ มี field 10 เป็น ตัวแปรตาม หรือ ที่เรียกว่า Label

    ทำการแบ่งข้อมูล เป็น X และ y
    (วิธีการ Slice ข้อมูล จะเป็นรูปแบบ data[ row, column])

    ก่อนนำไปใช้ ต้องแปลง y ให้เป็น One-Hot Encode ซึ่ง Keras เองมีเครื่องมือให้อยู่แล้ว

    การแบ่งข้อมูลเป็น Train/Test สามารถทำได้หลายวิธี แต่วิธีหนึ่งที่ง่ายและสะดวก คือ ใช้ train_test_split จาก Scikit Learn ในตัวอย่างนี้ มีข้อมูลตัวอย่างน้อย คือ เพียง 5 samples จึงแบ่งสัดส่วน Test Size = 0.3 หรือ 30%

    การสร้าง Model

    สมมุติ เราออกแบบ Neural Network ตามภาพ กล่าวคือ มี Input Layer จำนวน 10 Nodes และ มี Hidden Layers เป็น Dense 2 ชั้น จำนวน 8 และ 5 Nodes ตามลำดับ โดยมี Activation Function เป็น Relu จากนั้น ส่งไปยัง Output Layer ที่มี 3 Nodes ใช้ Activation Function เป็น Softmax เพราะจะเป็น Categorial Classification

    และ ใช้ Code ตามนี้ แล้ว Compile โดยใช้ Loss Function เป็น Categorical Crossentropy, Optimizer เป็น Adam ที่ Learning Rate 0.001 (เลือกจะตั้งค่าหรือไม่ก็แล้วแต่กรณี) และกำหนด Metrics เป้น Accuracy

    การ Training

    ใช้คำสั่ง fit ในการ train โดยกำหนด X_train คือข้อมูลสำหรับการสอนโมเดล และ y_train เพื่อให้โมเดลเปรียบเทียบว่าต่างจากผลที่คำนวณแค่ไหน (ผ่าน Loss Function) จากนั้นจึงทำการ Adjust Weights กลับมา (ผ่าน Optimizer) ในกระบวนการ Backpropagation
    ในตัวอย่างนี้ ตั้งค่า epochs หรือ จำนวนรอบที่จะ Train และ batch_size เพื่อกำหนดว่า จะให้ใช้ X_train ครั้งละกี่ sample ส่วน verbose ใช้สำหรับกำหนดระดับการแสดงผล 0 คือ แสดงทุกกอย่าง 2 คือแสดงแค่สรุป 2 บรรทัด เป็นต้น

    ในการ Train โมเดล สามารถกำหนด validation_data หรือ ข้อมูลที่ใช้ในการตรวจสอบความแม่นยำของโมเดล ระหว่างการ Train ได้ โดยอาจจะแยกข้อมูลสำหรับ Validation ออกมาต่างหากก็ได้ หรือ จะใช้ X_test, y_test ก็ได้ หรือ จะใช้ข้อมูลใน X_train, y_train แบ่งออกมา โดยการตัังค่า validation_split ก็ได้เช่นกัน

    นอกจากนั้น หากข้อมูลมีความไม่สมดุลย์ของคลาส (Imbanace Classes) ก็สามารถกำหนด class_weight ให้แต่ละ Class ได้ เพื่อให้โมเดลปรับความสมดุลย์เพิ่มเติมได้ และกำหนดการสลับลำดับ (Shuffle) ได้

    ส่วน Callbacks ใช้สำหรับเชื่อมต่อกับ Tensorboard ซึ่งจะกล่าวต่อไปบทความหลังจากนี้

    การ Evaluate ความแม่นยำ

    จะใช้ evaluate() สำหรับทดสอบความแม่นยำของโมเดล

    แสดงผลในรูปของ Graph

    ต้นแบบมาจาก

    https://machinelearningmastery.com/display-deep-learning-model-training-history-in-keras/

    ดูไอเดียนะครับ ยัง Overfit และการ Learning ยังไม่ไดี (แหะ ๆ ข้อมูลน้อย และ เป็นตุ๊กตาเท่านั้น) ที่ควรจะเป็นคือ Accuracy ควรจะค่อย ๆ เพิ่มขึ้น และ Loss ค่อย ๆ ลดลง

    Confusion Matrix

    ต้นแบบจาก SciKit Learn -> Confusion Matrix

    https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

    วิธีการใช้งาน

    หวังว่าจะเป็นประโยชน์ครับ

  • การสร้าง RESTful API สำหรับใช้งานจริง ง่าย ๆ ด้วย Flask และ Waitress

    จาก From LAB to Production – จาก Machine Learning Model สู่ Flask RESTful ซึ่งได้นำ Machine Learning แบบ Statistical Approach อย่าง Logistic Regression ที่สร้างโมเดล และ Train กับข้อมูลเรียบร้อยแล้ว (บนเครื่อง Development) จากนั้น ได้นำโมเดลออกมาใช้งาน โดยใช้ วิธีการ Serialization ด้วย joblib ในภาษา Python ได้เป็นไฟล์ออกมา แล้วจึงนำไปใช้เพื่อใช้ในการทำนาย (predict) ชนิดของดอก Iris บนเครื่อง Production โดยรับ Input จากผู้ใช้ผ่าน HTTP Protocol ทั้ง GET/POST ที่ TCP/5000

    ตัวอย่างดังกล่าว ยังเป็นเพียงการ “ทดสอบ” แต่ในบทความนี้ จะเป็นวิธีการ ซึ่งนำไปสู่การใช้งานจริง ๆ ซึ่ง Flask แนะนำให้ใช้งานกับ “waitress” (น่าจะเลียนแบบจาก Server) ซึ่งเป็น WSGI (Web Server Gateway Interface) อีกตัวหนึ่ง ใช้งานง่าย เพราะไม่ต้องติดตั้ง Apache/Nginx เลย

    ติดตั้ง waitress

    pip install waitress

    predict.py

    from flask import Flask, request, jsonify
    from flask_restful import Resource, Api, reqparse
    from flask_cors import CORS
    
    app = Flask(__name__)
    # Enable CORS
    CORS(app)
    
    @app.route("/predict", methods=["POST"])
    def predict():
    	result = 0
    	if request.method == "POST":    		
    		input_value = request.form["input_value"]
    		# ประมวลผล
    		# ...
    		# ตัวอย่างเช่น รับค่ามา แล้ว คูณ 2
    		result=input_value * 2
    		# ###
    	return jsonify(
    		prediction=result
    	),201

    ไฟล์ predict.py เป็นตัวอย่าง python ซึ่งรับค่า input_value จาก HTML form ผ่าน POST method เข้ามา ที่ /predict ซึ่งเขียนด้วย Flask ที่จะไปเรียกใช้ฟังก์ชั่น prediction() แล้วก็ทำการคำนวณที่ต้องการ จากนั้น ตอบค่ากลับไปเป็น JSON ด้วยฟังก์ชั่น jsonify โดยสามารถกำหนด key ชื่อ prediction และ value เป็น result ที่คำนวณได้ และแจ้ง Response Code เป็น 201

    waitress_server.py

    from waitress import serve
    import predict
    serve(predict.app, host='0.0.0.0', port=8080)

    ไฟล์ waitress_server.py ก็เพียงแค่ import serve จาก waitress ที่ติดตั้งไป และ import predict ซึ่งก็คือไฟล์ predict.py ข้างต้น (อยู่ในไดเรคทอรีเดียวกัน) จากนั้น ก็เรียก predict.app โดยรับได้จากทุก IP (0.0.0.0) ที่ TCP port 8080

    วิธีใช้งาน

    ก็แค่เปิด Command Prompt (ตัวอย่างนี้ทำบน Windows Server) แล้วใช้คำสั่ง

    python waitress_server.py

    จากนั้น ก็พัฒนา web application หรือ จะใช้ postman ทดสอบติดต่อเข้ามาก็ได้ ที่ http://server-ip-address:8080/predict แล้ว POST ข้อมูลเข้ามา ก็จะได้ผลลัพธ์กลับไปเป็น JSON

    หวังว่าจะเป็นประโยชน์ครับ